viernes, 23 de noviembre de 2018

¿COMO FUNCIONA LA SELECCIÓN NATURAL?

Evolución y selección natural son términos que suelen aparecer juntos, pero ambos conceptos ni son sinónimos ni están a priori necesariamente ligados. Las especies que ahora pueblan la Tierra proceden de otras especies distintas que existieron en el pasado, a través de un proceso de descendencia con modificación. La evolución biológica es el proceso histórico de transformación de unas especies en otras especies descendientes, e incluye la extinción de la gran mayoría de las especies que han existido. Una de las ideas más románticas contenidas en la evolución de la vida es que dos organismos vivos cualesquiera, por diferentes que sean, comparten un antecesor común en algún momento del pasado. Nosotros y cualquier chimpancé actual compartimos un antepasado hace algo así como 5 millones de años. También tenemos un antecesor común con cualquiera de las bacterias hoy existentes, aunque el tiempo a este antecesor se remonte en este caso a más de 3000 millones de años. Ahora bien, la idea de evolución por si sola es un concepto abierto, es una descripción mecánica de cambio que no dice nada acerca del motor o la fuerza creadora que subyace a la transformación. Así, en principio, la evolución puede estar dirigida por leyes inmanentes de la materia, o por una divinidad creadora, o por fuerzas ciegas, etc. 
    Podemos acotar el ámbito de los posibles mecanismos evolutivos al considerar las producciones de la evolución biológica. La complejidad es inherente a lo vivo. Cada organismo presenta estructuras o comportamientos altamente improbables que le permiten autoensamblarse y perpetuarse fuera del equilibrio termodinámico, y no puede explicarse por unión al azar de sus moléculas constituyentes. Esta complejidad característica de los organismos vivos se manifiesta en forma de adaptaciones y son, sin duda, el aspecto que más nos fascina cuando estudiamos cualquier especie. La habilidad que muestran las arañas cuando tejen su tela, la conducta rígidamente jerarquizada de una sociedad de hormigas, el camuflaje en forma y color de muchas especies con su medio, la delicada complejidad de un ojo,... Órganos, estructuras, conductas, suelen estar diseñados para la supervivencia y la reproducción. Pero ¿cómo se producen? Darwin introdujo precisamente el mecanismo de la selección natural para explicar las adaptaciones complejas y características de los seres vivos. Consideremos la aportación de Darwin en el contexto de la biología del siglo XIX.
    En 1802 el teólogo W. Paley publicó la obra Teología natural, en la que argüía que el diseño funcional de los organismos evidenciaba la existencia de un creador omnisapiente. Según él, el ojo humano, con su delicado diseño, constituía una prueba concluyente de la existencia de Dios. Para los naturalistas que querían explicar los fenómenos biológicos por procesos naturales, explicar la adaptación, la maravillosa adecuación de los organismos a su ambiente, constituía el problema fundamental. El argumento del diseño de Paley tenía una gran influencia en los naturalistas del XIX, a pesar de que esta visión intervencionista violaba flagrantemente el concepto de naturaleza que se había establecido con el desarrollo de la flsica en los siglos XVI y XVII. Los fenómenos del Universo, según esta nueva concepción, eran explicables por procesos naturales. La naturaleza, per se, era un objeto lícito para preguntar y contestar científicamente. Con el Origen de Darwin se introdujo esta revolución en la Biología. Lo verdaderamente revolucionario en Darwin fue el proponer un mecanismo natural para explicar la génesis, diversidad y adaptación de los organismos.
La selección natural es uno de los mecanismos básicos de la evolución, junto con la mutación, la migración y la deriva genética.
La gran idea de Darwin de la evolución por selección natural es relativamente sencilla, pero a menudo se entiende mal. Para averiguar cómo funciona, imagina una población de escarabajos:
  1. Hay diversidad de caracteres.
    Por ejemplo, algunos escarabajos son verdes y otros son marrones.
Color variation in these beetles


  1. Hay reproducción diferencial.
    Debido a que el ambiente no puede sustentar un crecimiento poblacional ilimitado, no todos los individuos consiguen reproducirse en todo su potencial. En este ejemplo, los pájaros tienden a comerse los escarabajos verdes, que logran sobrevivir y reproducirse con menos frecuencia que los marrones.
Differential reproduction
  1. Hay herencia.
    Los escarabajos marrones supervivientes tienen bebés escarabajo marrones debido a que este carácter tiene una base genética.
Heredity of the traits of the beetles who survive
  1. Resultado final:
    El carácter más ventajoso, el color marrón, que permite al escarabajo tener más descendientes, se vuelve más frecuente en la población. Si este proceso continúa, finalmente todos los individuos de la población serán marrones.
Eventually, the advantageous trait dominates
Si hay variación, reproducción diferencial y herencia, el resultado será la evolución por selección natural. Es así de simple.

¿COMO SE FORMAN NUEVAS ESPECIES?

Lo primero que es necesario entender en este tema –se denomina especiación- es que las especies se van originando poco a poco, en el transcurso de cientos o miles de años. Y la reproducción es la función biológica a través de la cual sucede este proceso; los hijos de los hijos de los hijos se parecen cada vez menos a los abuelos de sus abuelos, hasta que llega un momento en que son muy distintos. Uno de los ejemplos más sencillos de especiación es el que viene motivado por lo que se llama aislamiento geográfico. En este caso, una población de individuos va quedando separada en dos grandes grupos por algún tipo de barrera (aparición de un desierto, de una masa de agua, una montaña, etc.). Con el paso de las generaciones, los individuos de cada grupo van cambiando y adaptándose a su entorno, hasta que llega el momento en el que ya no se pueden reproducir entre ellos; es cuando se ha formado una nueva especie.
La pregunta que da título a este escrito ha sido objeto de intenso debate desde la publicación del libro de Charles Darwin El Origen de las Especies en el año de 1859. La aparición de nuevas especies durante el proceso evolutivo en la Tierra es uno de los procesos más fascinantes en el mundo de la Biología, al que se la ha denominado especiación. Los especialistas que se ocupan de contestar dicha pregunta son los biólogos evolutivos y estudian desde los organismos unicelulares más simples como las bacterias (en los que un individuo completo es una sola célula) hasta los organismos más complejos y grandes como las ballenas, las sequoias gigantes y los primates, entre los que se encuentra el ser humano. Los biólogos evolutivos piensan que la especie es lo que denominan “la unidad básica de clasificación”, en la que se basa el ordenamiento de los organismos vivos y que permite empezar a explicar la diversidad de vida en la Tierra.

En una contribución del número anterior de nuestra revista Saber más, se habló de la dificultad para establecer un concepto de especie que sea aplicado a todos los seres vivos del planeta y que satisfaga a los especialistas en distintas áreas, pero en esa ocasión no mencionamos nada respecto a cómo surgen nuevas especies, así que planteamos la pregunta: ¿Cómo a partir de una especie A, surge una especie B? El lector avezado podría replantear la pregunta y proponer ¿Cómo de una especie A surgen las especies B, C y D? O bien puede también cuestionarse ¿Cómo a partir de las especies A, B y C, surge la especie D? La forma de plantearse la pregunta es importante, ya que el mecanismo o proceso para contestar cada una de éstas puede contener componentes ecológicos y genéticos diferentes. Tratemos de explicar.
Los primeros pasos en la propuesta de un mecanismo basado en evidencia científica para proponer una explicación al proceso de especiación se encuentran en las observaciones y conclusiones de Darwin. Él observa que los organismos nunca producen la cantidad potencial de descendencia que tienen; es decir, si la pareja de una especie animal como el perro puede durante su vida tener 200 cachorros, es posible que únicamente nazcan 20, de los cuales únicamente 2 lleguen a la edad reproductiva y tengan descendencia. Las razones para esto son múltiples: en primer lugar, en la naturaleza una especie no se ocupa únicamente de reproducirse, tiene que conseguir alimento, huir de posibles depredadores, conseguir pareja para el apareamiento y encontrar un lugar para aparearse, entre otras actividades durante su ciclo de vida; una segunda observación de Darwin es que la progenie surgida de un apareamiento conserva algunas características de sus progenitores, pero al mismo tiempo son distintos a éstos y también entre sí. Esto es, él nota que hay descendencia con variación. A partir de estas observaciones, Darwin propone que existe un proceso de selección natural en el que, de todos los cachorros nacidos, únicamente algunos de éstos son capaces de llegar a la edad reproductiva y tener descendencia, debido a que fueron los que mejor pudieron responder a las condiciones ecológicas (ambientales) en las cuales se desarrollaron, en nuestro ejemplo únicamente dos cachorros. El resto de la camada murió antes de llegar a aparearse y producir descendencia, los otros 18 que nacieron en la pareja de nuestro ejemplo. Si las condiciones ecológicas cambian (temperatura, patrón de lluvias, llegada o desaparición de predadores, etc.), entonces seguramente los 2 cachorros que sobrevivan no sean los mismos que lo harían en las condiciones originales, o quizá sobrevivan 3, o quizá no sobreviva ninguno. En una escala de tiempo ecológica y evolutiva determinada (millones, cientos o miles de millones de años), es seguro que las condiciones ecológicas en las que las especies viven en algún momento van a cambiar. Regresaremos sobre este asunto del cambio ecológico y su relación con el proceso de especiación.
Darwin nunca supo qué ocasionaba la descendencia con modificación, es decir, cómo era que se heredaban características entre progenitores y progenie, y como consecuencia, tampoco supo qué ocasionaba la variación en ésta. Las bases para el entendimiento de estos fenómenos de herencia y variación fueron descritas por un monje de la región que ahora conocemos como República Checa, llamado Gregor Mendel. Con base en sus observaciones sobre cruzas controladas de plantas de chícharo, Mendel estableció las Leyes de la Herencia.
En los postulados de dichas leyes, Mendel establece la probabilidad de que una característica determinada (en el caso de sus plantas el color y la forma de la semilla, tamaño de la planta, color de la flor, entre otras) sea transmitida a la descendencia. También establece la probabilidad de que dos características distintas (por ejemplo, color de la semilla y tamaño de la planta) se hereden de manera conjunta. Mendel no tuvo conocimiento de qué tipo de sustancia o componente químico estaba asociado a las características morfológicas de las que él derivó las leyes de la herencia. No fue sino hasta 1956, con el trabajo de muchos investigadores entre los que destacan James Watson y Francis Crick, que se supo que el material que determina las características heredadas y que pasa de padres a hijos es el ácido desoxirribonucleico (ADN).
Y bueno, ¿A qué viene toda esta historia? ¿Y nuestra pregunta original de cómo aparecen nuevas especies en la Tierra? Intentemos regresar a ella. A diferencia de la obra de Darwin, que tuvo un impacto inmediato no sólo en los círculos científicos sino en la sociedad en general, los trabajos de Mendel pasaron prácticamente desapercibidos durante muchos años, hasta su redescubrimiento por Hugo De Vries, Carl Correns y Erich von Tschermak en 1900. A partir de ese momento surgieron investigadores que comprendieron que el trabajo de Mendel era esencial para explicar el proceso de selección natural propuesto por Darwin. El intercambio de ideas en ese sentido llevó a lo que se conoció históricamente en el área de la biología evolutiva como La Síntesis Moderna, a la que se sumó el conocimiento desarrollado respecto a la estructura y funcionamiento del ADN.
Simplificando las cosas, intentemos describir el resultado actual del proceso de síntesis, a partir del cual se generan las primeras propuestas sobre el mecanismo de especiación. Todas las especies tienen como material hereditario el ADN. Cuando dos individuos de la misma especie se aparean, el ADN de cada uno es heredado a la descendencia. Pero no se heredan copias exactas de los progenitores a la descendencia, sino un ADN que lleva modificaciones (mutaciones) que no estaban en el material genético de ninguno de los progenitores. Las modificaciones en cada uno de los individuos de la progenie son distintas, de tal forma que, esos cambios en el ADN, siguiendo nuestro ejemplo de los cachorros, hacen que cada cachorro sea distinto entre sí y cada uno de ellos sea distinto de sus progenitores. Es así como la evidencia genética da un sustento físico a la observación de Darwin de herencia con modificación. De todas las variantes genéticas de la progenie, sólo algunas pueden sobrevivir a las presiones del entorno ecológico, tienen mayor capacidad para resistir cambios en el entorno y llegar a la edad adulta para tener progenie. El resto de las variantes genéticas muere y no llega a la edad reproductiva, o si llega, no es capaz de aparearse para tener descendencia. Se da la selección natural.
Comentábamos anteriormente que las condiciones ecológicas en las que una especie vive están sujetas a cambios continuos. Imaginemos un escenario en el que una población de una especie A compuesta por 300 individuos vive en una extensa llanura que por algún fenómeno geológico es atravesada por un río que no estaba antes, dividiendo a la población, de tal manera que 200 de los individuos quedan de un lado del río y 100 del otro lado. Supongamos que debido a la presencia y la orientación de un lado del río empiezan a crecer más árboles que del otro lado, generando distintas condiciones de luz, temperatura y humedad entre las dos márgenes del río. Siguiendo el razonamiento de los proponentes de la síntesis y sus adherentes, las variantes genéticas (individuos o cachorros) que tengan más oportunidades de sobrevivir serán distintas entre las dos márgenes del río. Al paso del tiempo, las diferencias genéticas (acumulación de mutaciones) entre las poblaciones de las distintas márgenes del río aumentarán, al grado que sean perfectamente diferenciables y, si sus individuos se llegan a encontrar, no podrán aparearse entre ellos. Este proceso de acumulación de diferencias genéticas entre dos poblaciones que originalmente pertenecían a una misma especie puede presentarse inclusive sin que exista una barrera física, como el río de nuestro ejemplo anterior, pero la consecuencia en términos generales sería la misma y no nos detendremos a explicar con mayor detalle este caso particular. Esta puede ser la forma en que la especie A genere a una especie B, o bien en que la especie A genere a las especies B, C y D. Para tratar de entender este último caso, podemos imaginarnos que además del río se presenta una migración a otro sitio de un subgrupo de una de las poblaciones o la aparición de otras barreras físicas (lagos, montañas, separación de un fragmento de la llanura para generar una isla, etc.) que subdividen a la población original en tres o más subpoblaciones que eventualmente van acumulando diferencias hasta convertirse en especies distintas.
¿Cómo es que se van acumulando cambios genéticos en las distintas poblaciones? Para entender esto debemos recordar la estructura básica del ADN. Esta molécula está constituida de cuatro unidades fundamentales llamadas deoxinucleótidos (conteniendo a las bases nitrogenadas: Adenina, Guanina, Citosina y Timina), los cuales forma secuencias en las que cada uno de estos se puede repetir varias veces dentro de un gen. Según los biólogos evolutivos neodarwinistas, el cambio en la secuencia de un gen se puede dar en cualquiera de esos deoxinucleótidos en cualquier posición. Es decir, el cambio (la mutación) es aleatorio, no es provocado por el ambiente. En los genomas de cualquier progenie de una especie, las mutaciones que se van acumulando de generación en generación son aleatorias, y el hecho de que predominen ciertas variantes genéticas sobre otras en una población es debido a la selección del entorno ecológico. En la medida en la que la variación aleatoria y selección natural se combinan a lo largo de millones de años, nuevas especies van apareciendo.
Un punto de vista radicalmente distinto del expuesto anteriormente respecto al proceso de especiación lo constituye el desarrollado por Lynn Margulis y sintetizado en su obra “Adquiriendo genomas”, escrita junto con el físico termodinámico Dorion Sagan. Estos investigadores no niegan la existencia de la mutación aleatoria seguida de la selección natural en el proceso evolutivo propuesta por los neodarwinistas; sin embargo, su punto de vista es que la mutación al azar tiene poco que ver con el proceso de especiación. Su propuesta es que las nuevas especies aparecen principalmente debido a la interacción coordinada de genomas completos que previamente habían pertenecido a especies distintas. A dicho mecanismo le denominan simbiogénesis.
Para Margulis y Sagan, el proceso de especiación no existe en bacterias (procariotes), sino inicia junto con la aparición de los primeros organismos con núcleo, los eucariotes. En su argumentación, dichos investigadores señalan que la capacidad de las bacterias para intercambiar material genético entre ellas no les permite adquirir por grupos una “identidad” estable. Consideran que todas las bacterias de la Tierra forman una metaespecie, una única especie distribuida en todo el planeta. Sin embargo, las bacterias son importantes para el surgimiento de los primeros eucariotes y juegan un papel importante a lo largo del proceso evolutivo en la generación de nuevas especies.
Margulis y Sagan exponen ejemplos en los que según ellos es evidente el proceso de simbiogénesis durante la especiación. Un primer caso los constituyen los líquenes, asociaciones entre un hongo y un organismo fotosintético (microalga o cianobacteria). También exponen el ejemplo de animales fotosintéticos, como el de las babosas de jardín (Elysia viridis), que asociadas con cierto tipo de algas verdes han prescindido de consumir plantas, por lo que todo lo que tienen que hacer en su vida adulta es exponerse al sol para adquirir energía. Un último caso es el de los rumiantes, en particular las vacas, las cuales poseen en uno de sus estómagos el rumen, una comunidad compleja de microorganismos procariotes y eucariotes (hongos y protozoarios) que le permiten al animal aprovechar el material vegetal que consume y sin los cuales no podría asimilar dicho alimento. Desde la perspectiva de Margulis y Sagan, todos estos son claros ejemplos de cómo las especies se constituyen de interacciones entre genomas completas de microorganismos y eucariotes. Para ellos, la simbiogénesis puede explicar la conformación de nuevos tejidos, de nuevos órganos y por lo tanto, de nuevas especies.
La simbiogénesis es una propuesta reciente en términos de tiempos históricos dentro del desarrollo de las ideas científicas. Durante su exposición, Margulis y Sagan hacen una dura crítica a las ideas y teorías muy enraizadas en el pensamiento evolutivo, cuestionando a los así denominados biólogos evolutivos neodarwinistas. Es hasta cierto punto normal que cuando una nueva idea respecto a un fenómeno natural emerge, no obstante que exista evidencia observacional o empírica para apoyarla, sea recibida con escepticismo, o aun rechazo por una parte de la comunidad científica. Pero así es como se da el desarrollo científico, contrastado ideas y hallazgos sólidamente construidos mediante la aportación de nuevos datos. Las ideas de Margulis y Sagan respecto al proceso de especiación son refrescantes y ya sea que estén en lo cierto o no, traen nuevos vientos a la discusión de un fenómeno importante en la continuación de la vida. Como expresa el profesor Ernst Mayer un su prólogo al libro Adquiriendo genomas: “Nunca olvidemos la lección más importante que nos enseñan estos autores: el mundo de la vida no consiste únicamente de especies independientes, sino que cada individuo es en realidad un consorcio de varias especies”.

¿COMO SE DIO LA EVOLUCIÓN DE LAS ESPECIES?



Evolución de las especies. La hipótesis de que las especies se transforman continuamente fue postulada por numerosos científicos de los siglos XVIII y XIX, a los cuales Charles Darwin citó en el primer capítulo de su libro El origen de las especies. Sin embargo, fue el propio Darwin, en 1859, quien sintetizó un cuerpo coherente de observaciones que consolidaron el concepto de la evolución biológica en una verdadera teoría científica.

EVIDENCIAS DEL PROCESO EVOLUTIVO
Las evidencias del proceso evolutivo son el conjunto de pruebas que los científicos han reunido para demostrar que la evolución es un proceso característico de la materia viva y que todos los organismos que viven en la Tierra descienden de un ancestro común. Las especies actuales son un estado en el proceso evolutivo, y su riqueza relativa es el producto de una larga serie de eventos de especiación y de extinción. La existencia de un ancestro común puede deducirse a partir de características simples de los organismos.
Primero, existe evidencia proveniente de la biogeografía. El estudio de las áreas de distribución de las especies muestra que cuanto más alejadas o aisladas están dos áreas geográficas más diferentes son las especies que las ocupan, aunque ambas áreas tengan condiciones ecológicas similares (como la región ártica y la Antártida, o la región mediterránea y California).
Segundo, la diversidad de la vida sobre la tierra no se resuelve en un conjunto de organismos completamente únicos, sino que los mismos comparten una gran cantidad de similitudes morfológicas. Así, cuando se comparan los órganos de los distintos seres vivos, se encuentran semejanzas en su constitución que señalan el parentesco que existe entre las especies. Estas semejanzas y su origen permiten clasificar a los órganos en homólogos, si tienen un mismo origen embrionario y evolutivo, y análogos, si tienen diferente origen embrionario y evolutivo pero la misma función.
Tercero, los estudios anatómicos también permiten reconocer en muchos organismos la presencia de órganos vestigiales, que están reducidos y no tienen función aparente, pero que muestran claramente que derivan de órganos funcionales presentes en otras especies, tales como los huesos rudimentarios de las patas posteriores presentes en algunas serpientes.
La embriología, a través de los estudios comparativos de las etapas embrionarias de distintas clases de animales ofrecen el cuarto conjunto de evidencias del proceso evolutivo. Se ha encontrado que en las primeras de estas etapas del desarrollo, muchos organismos muestran características comunes que sugieren la existencia de un patrón de desarrollo compartido entre ellas, que a su vez, demuestra la existencia de un antepasado común.
El quinto grupo de evidencias proviene del campo de la sistemática. Los organismos pueden ser clasificados usando las similitudes mencionadas en grupos anidados jerárquicamente, muy similares a un árbol genealógico.
Las especies que han vivido en épocas remotas han dejado registros de su historia evolutiva. Los fósiles, conjuntamente con la anatomía comparada de los organismos actuales, constituyen la evidencia paleontológica del proceso evolutivo.
Resultado de imagen para evolución de las especiesMediante la comparación de las anatomías de las especies modernas con las ya extintas, los paleontólogos pueden inferir los linajes a los que unas y otras pertenecen. Sin embargo, la aproximación paleontológica para buscar evidencia evolutiva tiene ciertas limitaciones. El desarrollo de la genética molecular ha revelado que el registro evolutivo reside en el genoma de cada organismo y que es posible datar el momento de la divergencia de las especies a través del reloj molecular producido por las mutaciones. Por ejemplo, la comparación entre las secuencias del ADN del humano y del chimpancé ha confirmado la estrecha similitud entre las dos especies y han arrojado luz acerca de cuando existió el ancestro común de ambas.

Evolución y religión

Antes de que la geología se convirtiera en una ciencia, a principios del siglo XIX, tanto las religiones occidentales como los científicos descontaban o condenaban de manera dogmática y casi unánime cualquier propuesta que implicara que la vida es el resultado de un proceso evolutivo.
Sin embargo, a medida que la evidencia geológica empezó a acumularse en todo el mundo, un grupo de científicos comenzó a cuestionar si una interpretación literal de la creación relatada en la Biblia judeo-cristiana podía reconciliarse con sus descubrimientos (y sus implicaciones).
A pesar de las abrumadoras evidencias que avalan la teoría de la evolución, algunos grupos interpretan en la Biblia que un ser divino creó directamente a los seres humanos, y a cada una de las otras especies, como especies separadas y acabadas. A partir de 1950 la Iglesia católica romana tomó una posición neutral con respecto a la evolución con la encíclica Humani generis del papa Pío XII. En ella se distingue entre el alma, tal como fue creada por Dios, y el cuerpo físico, cuyo desarrollo puede ser objeto de un estudio empírico.
No pocos ruegan con insistencia que la fe católica tenga muy en cuenta tales ciencias; y ello ciertamente es digno de alabanza, siempre que se trate de hechos realmente demostrados; pero es necesario andar con mucha cautela cuando más bien se trate sólo de hipótesis, que, aun apoyadas en la ciencia humana, rozan con la doctrina contenida en la Sagrada Escritura o en la tradición.
En 1996Juan Pablo II afirmó que «la teoría de la evolución es más que una hipótesis» y recordó que «El Magisterio de la Iglesia está interesado directamente en la cuestión de la evolución, porque influye en la concepción del hombre».

El papa Benedicto XVI ha afirmado que «existen muchas pruebas científicas en favor de la evolución, que se presenta como una realidad que debemos ver y que enriquece nuestro conocimiento de la vida y del ser como tal. Pero la doctrina de la evolución no responde a todos los interrogantes y sobre todo no responde al gran interrogante filosófico: ¿de dónde viene todo esto y cómo todo toma un camino que desemboca finalmente en el hombre?».
Cuando la teoría de Darwin se publicó, las ideas de la evolución teísta se presentaron de modo de indicar que la evolución es una causa secundaria abierta a la investigación científica, al tiempo que mantenían la creencia en Dios como causa primera, con un rol no especificado en la orientación de la evolución y en la creación de los seres humanos.
De esta manera se puede concluir que nosotros hemos ido evolucionando a través de los años, y que mucho hombres científicos has podido investigar sobre esta evolución y se han creado diversas teorías aunque en la actualidad ninguna esta confirmada oficialmente, ya esta en criterio de cada uno creer un una de ellas  

LA EVOLUCIÓN DE LAS ESPECIES


Imagen relacionada

¿PRODRIAMOS VIVIR EN LA TIERRA CON CARACTERÍSTICAS DE HACE 3500 MILLONES DE AÑOS?


Basándonos en lo que sabemos previamente sobre este tema, como que hace 3500 millones de años se segregaba un gas que fue causante de la primera masiva del planeta, entonces nuestra respuesta a la interrogante es que NO. Para poder comprobar nuestra, por así decirlo, hipótesis tenemos indagar sobre las características de la tierra de hace 3500 millones de años.

A lo largo de la historia de la humanidad se han dado muchas explicaciones sobre el origen de la vida. Estas han variado de acuerdo con los adelantos técnicos, tecnológicos y conceptuales de cada época, así como con aspectos culturales y religiosos. A continuación veremos algunas de las principales hipótesis que la ciencia ha presentado al respecto, hasta llegar a las teorías que son más aceptadas actualmente.
A continuación observa el vídeo propuesto para ser debatido en clase. 





Se adjunta un material de consulta, lee y responde en tu cuaderno las preguntas planteadas en el documento e imprime la página 14 y desarrolla las actividades. Accede aquí
Para comprender mejor el origen de la vida te recomiendo la lectura del libro: "El Origen de la vida". Accede aquí 
Revisa los siguientes vídeos:La gran pregunta ¿cómo comenzó el universo? - ¿cómo se hizo la Tierra?




Hace unos 3500 millones de años, cuando en los océanos ya emergían millones de células vivas, aparecieron los estromatolitos. Ya hace 2500 y 1000 millones de años atrás, los arrecifes de estromatolitos estaban ampliamente expandidos y comenzaron a segregar un gas que fue causante de la primera extinción masiva del planeta. Este gas era el oxígeno y provocó un cambio drástico en la Tierra, notable hasta nuestros días. 

Es el periodo comprendido desde la formación de la tierra hace 4,500 millones de años hasta hace 600 millones de años. Existe muy poca evidencia fósil que permita identificar sus características ambientales y las formas de vida existentes, por lo que la historia de este eón es poco conocido y continúa investigándose. Las evidencias fósiles indican que hace 3,200 millones de años ya existían los primeros habitantes del planeta. Los eventos que originaron su aparición y desarrollo ocurrieron durante un determinado lapso, por tal motivo algunos investigadores afirman que la vida debió originarse antes, presumiblemente hace 3,600 millones de años. Los primeros seres vivos, inicialmente heterótrofos, desarrollaron un proceso fotosintético que, repetido a lo largo de muchos millones de años, produjo, entre otros hechos, la progresiva acumulación de oxígeno libre en la atmósfera. Hacia finales de este eón, hace 600 millones de años, en el ambiente marino ya había organismos pluricelulares de cuerpo blando como esponjas, celenterados, gusanos, moluscos y equinodermos.
Resultado de imagen para gas de  3500 millones de años
De esta manera podemos concluir que la hipótesis que se les proporciono al inicio es correcta, de manera que al indagar se pudo confirmar que hace 3500 se segregaba un gas letal que podría acabar con la vida en la tierra. Entonces las características de la tierra hace 3500 millones de años no eran ni son las adecuadas para que podamos vivir cumpliendo nuestras necesidades básicas como seres humanos.







viernes, 4 de mayo de 2018

¿QUÉ PASA CUANDO LAS CÉLULAS SE AGRUPAN? Infografía


FUNCIONES VITALES DE LA CÉLULA

Cuando hablamos de funciones vitales nos referimos a las funciones que todo ser vivo realiza para mantener la vida. Las componen un total de tres y son comunes para todos, e incluso los seres vivos unicelulares pueden desempeñarlas, pues la única célula con la que cuentan las realiza de manera independiente. Sin ellas sería completamente imposible sobrevivir y todas las especies se extinguirían, puesto que una de ellas es la reproducción.

                       Resultado de imagen para funciones vitales

Funciones vitales: nutrición
La nutrición es la función vital que nos permite mantenernos vivos, pues recoge todas aquellas actividades que realizamos todos los seres vivos para obtener la materia y energía imprescindibles para vivir. Para poder desempeñarse correctamente, la nutrición se compone de varios factores:
·         La alimentación. Sin la ingesta de alimentos que nos proporcionen las proteínas y nutrientes necesarios para desarrollarnos y crecer no sería posible la supervivencia. Existen dos tipos de nutrición: la heterótrofa y la autótrofa. La primera de ellas corresponde a la que utilizamos los humanos y animales, y se basa en la fabricación de materia propia a partir de materia órganica. Es decir, ingerimos alimentos que pueden ser tanto de procedencia animal como vegetal, nuestro organismo los digiere y reduce a moléculas simples. El sistema digestivo juega un papel fundamental en este proceso. Mientras que la segunda consiste en la creación de materia orgánica a partir de inorgánica, como el dióxido de carbono, el agua o las sales minerales, a través de la fotosíntesis. Así, corresponde a la forma de nutrición de los vegetales.
·         La circulación. Este proceso de la nutrición es vital para hacer llegar la materia a todas las partes del cuerpo. Se realiza mediante el sistema circulatorio, el cual te explicamos en detalle en este vídeo.
·         La excreción. Todos los seres vivos ingieren la materia y energía que necesitan para vivir y expulsan las sustancias nocivas, dañinas o inservibles para ellos, a través del cuerpo o la fotosíntesis, y esto se hace mediante la excreción. En el caso de los humanos y animales, lo hacemos mediante la orina y la materia fecal, gracias al sistema excretor.
·         La respiración. Incluímos la respiración dentro de la nutrición porque es el proceso metabólico que nos permite tener, elaborar y mantener toda la energía que hemos adquirido mediante la alimentación. Consiste en la entrada de oxígeno al cuerpo y expulsión del dióxido de carbono, mediante el sistema respiratorio.

                           Resultado de imagen para funciones vitales nutricion en la célula

Funciones vitales: reproducción
La reproducción es la función vital que nos permite asegurar la proliferación de las especies. Sin ella, nos extinguiríamos y conformaríamos un planeta exento de vida. Mediante la reproducción, los seres vivos pueden generar organismos semejantes a sí mismos y lograr, así, la supervivencia a largo plazo de la especie a la que pertenecen. Existen dos grandes tipos de reproducción, la sexual y la asexual.
La reproducción sexual es la que requiere de la intervención de dos individuos de sexo opuesto, es decir, uno femenino y otro masculino. Se realiza mediante la unión de las células sexuales (óvulos y espermetaozoides), o gametas, de cada uno de los individuos, la cual se denomina fecundación. Dicha unión puede producirse de manera externa, en la que las células sexuales se unen fuera del cuerpo de los individuos y los huevos, por tanto, se forman fuera (es el caso de muchos de los animales marítimos, por ello este tipo de fecundación se produce en el agua); o interna, en la que las células masculinas, espermatozoides, deben entrar en el cuerpo de la hembra a través de los órganos reproductores, unirse con sus gametas, óvulos, y fecundarlas. Así, el feto se desarrolla dentro del cuerpo de la hembra (se produce en los animales mamíferos y seres humanos).
La reproducción asexual es aquella en la que solo internviene un único individuo, propia de los seres unicelulares. Se distinguen varios tipos dentro de esta rama de la reproducción:
·         Bipartición de una célula en dos para dar lugar a dos hijos, es el caso de las algas unicelulares y protozoos.
·         Fragmentación de un organismo dando lugar a la creación de otro ser vivo, es el caso de las estrellas de mar, entre otros.
·         Gemación, en la que el progenitor crea un nuevo individuo mediante las yemas que se encuentran en la membrana plasmática. El padre realiza una división desigual de una de sus células, la más pequeña pasa a la yema y se desarrolla otro organismo semejante. Es el caso de las esponjas de mar, entre otros.

Resultado de imagen para funciones vitales reproducción en la célula
Funciones vitales: relación
La relación es la función vital que nos permite reaccionar y generar una respuesta o estímulo ante un determinado cambio. Cuando hablamos de estímulo nos referimos a una variación del medio, mientras que cuando decimos respuesta estamos haciendo referencia a la reacción tanto de las células como de los seres vivos. En general, son los estímulos los que generan una respuesta, que puede ser positiva, cuando el movimiento va en la misma dirección, o negativa, si va en la dirección opuesta. Un ejemplo claro de estímulo puede ser la sensación de hambre, cuya respuesta positiva sería el instinto y acto de cazar para alimentarse.
Gracias a la percepción de cambios en el medio (estímulos), tanto interiores (de nuestro propio cuerpo) como exteriores (entorno), y elaboración de respuestas a estos estímulos, es posible garantizar la supervivencia, pues es lo que hace posible que los seres vivos se relaciones entre ellos y con el medio ambiente.




TEJIDOS VEGETALES

Definición de Tejidos Vegetales



Cuando se habla de los tejidos vegetales se alude a aquel conglomerado de células con una misma condición, que se hallan unidas unas con otras de forma sólida y perdurable con el fin de formar grupos macizo o laminares, con una misión en común; es decir son grupos de células que se asemejan en referencia a su forma y función, que se fusionan para desarrollar exactamente la misma función. Cada uno de los tejidos vegetales se constituye por células denominadas eucariotas de naturaleza vegetal. De una manera más específica los tejidos vegetales derivan gracias a la división consecutiva de las células que componen el embrión de la semilla que se forma luego de la fecundación que se da en las plantas.Estas células vegetales que componen la planta pueden ser células vivas, que se encargan del propio desarrollo de la planta, fotosíntesis, almacenamiento de sustancias, respiración, crecimiento y reparación de daños; y las células muertas, las cuales proporcionan soporte y resistencia a la planta gracias a sus paredes lignificadas y engrosadas, formando varios conductores para la savia bruta.

En una planta pueden existir varios tipos de tejidos que se diferencian según su función, entre ellos están, los tejidos protectores, conductores, tejidos de crecimiento, parenquimáticos, de sostén, secretor y meristemáticos.
Tejidos protectores, como su nombre lo dice son aquellos tejidos encargados de proteger a la planta, formando una capa externa en ella para así resguardarla de los agentes externos; está conformada por el tejido epidérmico o epidermis y el tejido suberoso o súber.

Tejidos conductores: estos tejidos se forman a partir de diferentes tipos de células y de ahí se les denomina como los tejidos más complejos, dado a que en su mayoría derivan de las células meristemáticos; existen dos tipos de tejidos conductores que son el xilema y el floema, los cuales constituyen el sistema vascular o conductor de los vegetales.

Tejidos de crecimiento: estos también llamados meristemos se constituyen por células jóvenes que se dividen continuamente por medio de una mitosis; las células de estos originan las células que forman la planta. Los tejidos de crecimiento poseen un núcleo grande con abundante citoplasma.

Tejidos parenquimáticos: se encargan de nutrir a la planta, localizado en todos los vegetales, se ocupan de llenar aquellos espacios libres que otros órganos y tejidos dejan; existen varios tipos, donde uno de ellos es el responsable de realizar la fotosíntesis.

Tejidos de sostén: estos se constituyen por células cuyas paredes celulares son gruesas para aportar una resistencia mecánica grande; comparten la misma función pero se diferencian por su estructura y la textura de las paredes celulares que poseen, además por la localización de cada uno dentro del vegetal.

Tejidos secretores: constituidos por estructuras diversas, con la única característica en común es la de almacenar y segregar sustancias a las cavidades externas e internas del vegetal; existen varios tipos de estos tejidos de acuerdo a su localización.

Tejidos meristemáticos: son los responsables del crecimiento vegetal, en un sentido longitudinal y diametral; las células en estos tejidos poseen una doble capacidad de diferenciación y de multiplicación.